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Abstract A new colorimetric and fluorescent receptor 1 for
the detection of CN− has been simply developed. Receptor 1
showed selectively colorimetric and fluorometric responses to
CN− in a near-perfect aqueous solution, respectively. This
sensor displayed an obvious color change from yellow to col-
orless upon selective binding with CN−. In addition, it could
function as an BOFF-ON type^ fluorescent response through a
nucleophilic addition mechanism. The binding mode of recep-
tor 1 with CN− was proposed to be 1:1, based on Job plot, 1H
NMR titration and ESI-mass spectrometry analysis. More-
over, the sensing mechanism for CN− was theoretically sup-
ported by DFT and TD-DFT calculations.
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Introduction

Development of chemical sensors for anions is of great inter-
est due to their important roles in biological, industrial and
environmental process [1–5]. Among the various anions, cy-
anide is extensively utilized in many fields such as gold min-
ing, electroplating, metallurgy, synthetic fibers and resins

industry. Therefore, the wide use of cyanide is inevitable,
and many industries produce nearly 140,000 tons of cyanide
per year worldwide [6–10]. On the other hand, cyanide is
known to be damaging anion causing poison in biology and
environment. It has propensity to bind to the iron in cyto-
chrome c oxidase, interfering with electron transport and
resulting in hypoxia [11–15]. Thus, there is a strong demand
for an efficient sensing method to monitor cyanide.

A variety of sensors for cyanide have been developed via
various kinds of sensing methods, such as atomic absorption,
electrochemical methods and mass spectroscopy [16–19]. The
major limitation of these methods is the use of time-
consuming procedures that involve the use of sophisticated
instrumentation. However, colorimetric and fluorescence ap-
proaches could be used to overcome the limitation. The col-
orimetric approach allows naked-eye detection of the color
change without resorting to the use of expensive instruments
[20–22]. In addition, the fluorescence approach can detect
interesting analytes with fast response, convenient procedures,
and high sensitivity [23–36]. For this reasons, scientists have
devoted many efforts to design colorimetric and fluorescent
chemosensors for monitoring cyanide [25–47].

Chemodosimeters are molecular probes used to achieve the
recognition of analyte with the irreversible process. They have
been intensively studied in the anion sensing area, because
they have advantage of high selectivity by the minimized in-
terference of other anions [48–55]. Nevertheless, they still
suffer from the high detection limit and decreased reaction
rate in aqueous solution. To overcome the challenges, there-
fore, we developed a new colorimetric and fluorescent sensor,
which has an imine moiety acting as a nucleophilic acceptor.

Herein, we report a new triazole-based chemosensor 1,
which was synthesized in one step by condensation reaction
of 3,5-diamino-1,2,4-triazole and 2-hydroxy-1-naphthalehyde
(Scheme 1). Chemosensor 1 detected cyanide by both color

Electronic supplementary material The online version of this article
(doi:10.1007/s10895-015-1635-9) contains supplementary material,
which is available to authorized users.

* Cheal Kim
chealkim@snut.ac.kr

1 Department of Fine Chemistry and Department of Interdisciplinary
Bio IT Materials, Seoul National University of Science and
Technology, Seoul 139-743, Korea

J Fluoresc (2015) 25:1449–1459
DOI 10.1007/s10895-015-1635-9

http://dx.doi.org/10.1007/s10895-015-1635-9
http://crossmark.crossref.org/dialog/?doi=10.1007/s10895-015-1635-9&domain=pdf


change from yellow to colorless and fluorescence enhance-
ment in a near-perfect aqueous solution. A nucleophilic addi-
tion mechanism for sensing of CN− was proposed, which was
supported by the DFT/DT-DFT calculation method.

Experiments

Reagents and Instrument

All reagents were commercially obtained from Sigma-Aldrich
(St. Louis, Mo, USA) and used without further purification.

Anhydrous ethanol was prepared by the simple distillation
from MgSO4. Fluorescence measurements were performed
on a Perkin Elmer model LS45 fluorescence spectrometer.
The 1H NMR measurements were performed on a Varian
400 MHz spectrometer and 100 MHz spectrometer, respec-
tively and the chemical shifts were recorded in ppm.
Electrospray ionization mass spectra (ESI-MS) were collected
on a thermo Finnigan (San Jose, CA, USA) LCQTM Advan-
tageMAX quadrupole Ion trap instrument. Elemental analysis
for carbon, nitrogen and hydrogen was carried out by using
Flash EA 1112 Elemental analyzer (thermo) in Organic
Chemistry Research Center of Sogang University, Korea.

Scheme 1 Synthetic procedure of chemosensor 1
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Fig. 1 a Absorption spectral
changes of 1 (20 μΜ) in the
presence of 12 equiv. of different
anions in bis-tris buffer (10 mM
bis-tris, pH=7.0). b The color
changes of 1 (20 μΜ) upon
addition of various anions (12
equiv.) in bis-tris buffer (10 mM
bis-tris, pH=7.0)
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Absorption spectra were recorded at 25 °C using the Perkin
Elmer model Lambda 25 UV/vis spectrometer. All electronic
figures were created by Origin 8.0.

Synthesis of 1

3,5-Diamino-1,2,4-triazole (151.7 mg, 1.5 mmol) in ethanol
(10 mL) was added to a solution containing 2-hydroxy-1-
naphthalehyde (298.7 mg, 1.7 mmol) in ethanol (10 mL).
The reaction mixture was stirred for 1 d, until the yellow
precipitate appeared. The precipitate was filtered and washed
with ether (10 mL×2) and ethanol (10 mL). The yield was
69 % (262.1 mg). 1H NMR (400 MHz, DMSO-d6, ppm) δ
12.13 (s, 1H), 9.84 (s, 1H), 8.21 (d, J=8.7 Hz, 1H), 8.00 (d,
J=9.2 Hz, 1H), 7.87 (d, J=8.1 Hz, 1H), 7.60 (t, J=7.7 Hz,
1H), 7.41 (t, J=7.5 Hz, 1H), 7.13 (d, J=9.1 Hz, 1H), 6.30 (s,
2H); 13C NMR (100 MHz, DMSO-d6, ppm): 166.36 (1C),
160.37 (1C), 157.71 (1C), 157.30 (1C), 136.61 (1C), 133.02
(1C), 129.66 (1C), 128.89 (1C), 127.64 (1C), 124.18 (1C),
120.89 (1C), 120.03 (1C), 108.95 (1C). LRMS (ESI): m/z
calcd for C13H10N5O: 252.089 ([M-H+]); found, 252.267.
Anal. calcd for C13H11N5O (249.273): C, 61.65; H, 4.38; N,
27.65; found: C, 61.75; H, 4.39; N, 27.93.

UV–vis Measurements of Receptor 1 with CN−

Receptor 1 (0.4 mg, 0.0015 mmol) was dissolved in DMSO
(0.5 mL) and 20 μL of the receptor 1 (3 mM) were diluted to
2.980 mL bis-tris buffer to make the final concentration of
20 μM. Tetraethylammonium cyanide (TEACN, 49.3 mg,
0.3 mmol) was dissolved in bis-tris buffer (1 mL). 0.2-
4.2 μL of the CN− solution (300mM) were transferred to each
receptor solution (20 μM) prepared above. After mixing them
for a few seconds, UV–vis absorption spectra were taken at
room temperature.

Fluorescence Measurements of Receptor 1 with CN−

Receptor 1 (0.4 mg, 0.0015 mmol) was dissolved in DMSO
(0.5 mL) and 20 μL of the receptor 1 (3 mM) were diluted to
2.980 mL bis-tris buffer to make the final concentration of
20 μM. TEACN (49.3 mg, 0.3 mmol) was dissolved in bis-
tris buffer (1 mL). 0.2–3.2 μL of the CN− solution (300 mM)
were transferred to each receptor solution (20 μM) prepared
above. After mixing them for a few seconds, fluorescent spec-
tra were taken at room temperature.

Job Plot Measurement

Receptor 1 (12.7 mg, 0.05 mmol) was dissolved in DMSO
(5 mL). 12, 10.8, 9.6, 8.4, 7.2, 6.0, 4.8, 3.6, 2.4, 1.2 and 0 μL
of receptor 1 solution were taken and transferred to vials. Each
vial was diluted with bis-tris buffer to make a total volume of
2.988 mL. TEACN (8.2 mg, 0.05 mmol) was dissolved in bis-
tris buffer (5 mL). 0, 1.2, 2.4, 3.6, 4.8, 6.0, 7.2, 8.4, 9.6, 10.8,
and 12 μL of the TEACN solution were added to each diluted
receptor 1 solution. Each vial had a total volume of 3 mL.
After shaking the vials for a few seconds, UV–vis spectra
were taken at room temperature.

Competition with Other Anions

Receptor 1 (0.4 mg, 0.0015 mmol) was dissolved in DMSO
(0.5 mL) and 20 μL of the receptor 1 (3 mM) were diluted to
2.980 mL bis-tris buffer to make the final concentration of
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Fig. 2 Absorption spectral changes of 1 (20 μM) in the presence of
different concentrations of CN− (from 0 to 12 equiv.) at room temperature

Scheme 2 The proposed colorimetric and fluorescent sensing mechanism of 1 for CN−
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20 μM. Tetraethylammonium (TEA) salts (F−, Cl−, Br−, I−,
0.3 mmol) or tetrabuthylammonium (TBA) salts (OAc−

H2PO4
−, N3

−, SCN−, BzO−, 0.3 mmol) or Na salts (NO2
−,

S2
−, SH−, 0.3 mmol) were separately dissolved in bis-tris buff-

er (1 mL). 3.2 μL of each anion solution (300mM) were taken
and added into 2.968 mL of each 1 solution (20 μM) prepared

Fig. 3 Negative-ion electrospray
ionization mass spectrum of 1
(20 μM) upon addition of
TEACN (12 equiv.)

Fig. 4 a Absorption spectral
changes of 1 (20 μM) upon
addition of cyanide (12 equiv.) in
the absence and presence of 12
equiv. of various anions in bis-tris
buffer (10 mM bis-tris, pH=7.0).
b The color changes of 1 (20 μΜ)
upon addition of cyanide (12
equiv.) in the absence and
presence of 12 equiv. of various
anions in bis-tris buffer (10 mM
bis-tris, pH=7.0)
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above to make 16 equiv. Then, 3.2 μL of the TEACN solution
(300 mM) were added into the mixed solution of each anion
and 1 to make 16 equiv. After mixing them for a few seconds,
UV–vis and fluorescence spectra were taken at room temper-
ature, respectively.

1H NMR Titration

For 1H NMR titrations of receptor 1 with CN−, five NMR
tubes of receptor 1 (2.5 mg, 0.01 mmol) dissolved in
DMSO-d6/CD3OD (v/v=6:4) were prepared and then five
different concentrations (0, 0.015, 0.03, 0.09 and 0.12 mmol)

of TEACN dissolved in CD3OD were added to each solution
of receptor 1. After shaking them for a minute, 1H NMR
spectra were taken at room temperature.

Calculation Methods

All theoretical calculations were performed by DFT/TD-DFT
method with the hybrid exchange-correlation functional
B3LYP [56, 57] applying the 6-31G**[58, 59] basis set without
any symmetry restrictions in the gas phase. The energy-
minimized structure of 1 was obtained in various geometric
forms. On the basis of the optimized ground (S0) structure of
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Fig. 5 a Fluorescence spectra of
1 (20 μΜ, λex=335 nm) upon
addition of various anions (16
equiv.) in bis-tris buffer (10 mM
bis-tris, pH=7.0). b Bar graph
representing the change of the
relative emission intensity of 1
(20 μΜ) at 466 nm upon
treatment with various anions
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1, the optimized structures of 1-CN- were also obtained. In
vibrational frequency calculations, there was no imaginary fre-
quency for the optimized geometries of 1 and 1-CN−, suggest-
ing that these geometries represented local minima. For all
calculations, the solvent effect of water was considered by
using the Cossi and Barone’s CPCM (conductor-like
polarizable continuum model) [60, 61]. In order to investigate
the transition energies for the optimized structures of 1 and 1-
CN-, we calculated the lowest 20 singlet-singlet transition using
their ground state geometry (S0) with TD-DFT (B3LYP) meth-
od. The GaussSum 2.1 was used to calculate the contribution of
molecular orbital in electronic transitions [62]. All the calcula-
tions were performed with Gaussian 03 suite [63].

Results and Discussion

Synthesis of 1

The receptor 1 was obtained by coupling 3,5-diamino-1,2,4-
triazole and 2-hydroxyl-1-naphthaldehyde with 70 % yield in
ethanol (Scheme 1) and analysed by 1H NMR, 13C NMR,
ESI-mass spectrometry and elemental analysis.

Colorimetric and Fluorescent Cyanide Sensing

The colorimetric sensing properties of 1 toward CN− were
studied by UV–vis spectrometry (Fig. 1). When various an-
ions (TEA salts: F−, Cl−, Br−, I−, CN−; TBA salts: OAc−,
H2PO4

−, N3
−, SCN−, BzO−; Na salts: NO2

−, S2
−, SH−) in

bis-tris buffer solution (10 mM, pH 7.0) were added into the
1 solution, only CN− showed UV–vis change with a complete
decrease of absorption band at 400 nm (Fig. 1a). Consistent
with the change in UV–vis spectrum, the solution of 1 resulted
in a color change from yellow to colorless with cyanide ion
(Fig. 1b). These results proposed that CN− might attack the
imine group of 1 via a nucleophilic addition mechanism,
resulting in colorless [38, 64, 65].

To further investigate the binding property of 1 with CN−,
the UV–vis titration experiments were performed (Fig. 2). The
absorption spectrum of 1 showed a broad band in a range of
350 to 450 nm, which might be attributed to the transition of
intramolecular charge transfer (ICT) band. It is known that
chemosensor containing an electron-donating group (−NH2)
and an electron-withdrawing group (−C=N-) undergoes ICT
from the donor to the acceptor following electronic excitation
(Scheme 2) [66–68]. On treatment with CN− to solution of 1,
the absorption band at 400 nm was gradually attenuated and
reached minimum at 12 equiv. of CN−, and a clear isosbestic
point was observed at 288 nm. A noticeable decrease of the
absorption band at 400 nm suggested that the transition of ICT
might be interrupted by the nucleophilic addition reaction of
CN− to 1 (Scheme 2) [38, 64, 65].

The Job plot [69] referred to a 1:1 stoichiometry between 1
and CN− (Fig. S1), which was further confirmed by ESI-mass
spectrometry analysis (Fig. 3). The negative-ion mass spec-
trum showed the formation of the 1-CN− complex [calcd:
279.100, m/z: 279.000 for 1+CN−]. Based on the UV–vis
titration, Job plot and ESI-mass analysis, we proposed the
sensing mechanism of 1 for CN− as shown in Scheme 2.
The detection limit of 1 for CN− was determined to be
35 μM, based on the 3σ/slope (Fig. S2) [70].

To explore the ability of 1 as a colorimetric chemosensor
for CN−, the competition experiments were conducted in the
presence of CN− mixed with various competing anions
(Fig. 4).When 1was treated with 12 equiv. of CN- in presence
of the same concentration of other anions, all these competing
anions showed no obvious interference with naked-eye detec-
tion of CN− by 1. These results indicated that chemosensor 1
could be a good CN− sensor over other competing anions in
aqueous solution.

For biological application, the pH dependences of 1 in the
absence and presence of CN− were examined at various pH.
The decrease of absorbance caused by adding CN− was ob-
served between 7 and 12 (Fig. S3), which warrants its appli-
cation for detection of CN− by 1 under physiological
conditions.

Next, to examine the fluorescent properties of 1, the emis-
sion was measured with various anions (TEA salts: F−, Cl−,
Br−, I−, CN−; TBA salts: OAc−, H2PO4

−, N3
−, SCN−, BzO−;

Na salts: NO2
−, S2

−, SH−) in bis-tris buffer solution (10 mM,
pH 7.0). Receptor 1 alone has a weak fluorescence emission
(λmax=466 nm and λex=335 nm) (Fig. 5). When 16 equiv. of
anions such as CN−, OAc−, F−, Cl−, Br−, I−, H2PO4

−, N3
−,

SCN−, BzO−, NO2
−, S2

−, and SH− were added to the sensor
1, it was found that the solution of 1 exhibited either no or
small increases of the fluorescence. In contrast, the addition of
CN− into 1 showed a remarkable fluorescence enhancement
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Fig. 6 Fluorescence spectra of 1 (20μM, λex=335 nm) in the presence of
increasing different concentration of CN− (from 0 to 16 equiv.) at room
temperature
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(390-folds) of emission intensity at 466 nm. These results
indicated that sensor 1 could be used as a fluorescence
chemosensor for CN−.

To further investigate the chemosensing properties of 1,
fluorescence titration of the sensor 1 with CN− ion was per-
formed. As shown in Fig. 6, the emission intensity of 1 at
466 nm gradually increased until the amount of CN− reached
16 equiv. This observation with the UV–vis titration results,
again, suggested that the ICT process was inhibited upon the
addition of CN−, as shown in Scheme 2. That is, the

nucleophilic addition of CN− to the imine group of 1
prevented ICT, and the naphthol group functioned as a
fluorophore, which induced the fluorescence enhancement
of 1-CN−.

To explore the ability of 1 as a fluorescence chemosensor
for CN−, the competition experiments were performed in the
presence of CN− mixed with various anions. When 1 was
treated with 16 equiv. of CN− in the presence of the same
concentration of other anions (Fig. 7), other background an-
ions had no obvious interference with the detection of CN−
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Fig. 7 a Fluorescence spectral
changes of 1 (20 μM, λex=
335 nm) upon addition of cyanide
(16 equiv.) in the absence and
presence of 16 equiv. of various
anions in bis-tris buffer (10 mM
bis-tris, pH=7.0). b Bar graph
representing the fluorescence
intensity of 1 (20 μM, λex=
335 nm, λem=466 nm) with
cyanide (16 equiv.) in the absence
and presence of 16 equiv. of
various anions in bis-tris buffer
(10 mM bis-tris, pH=7.0)
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ion. These results indicated that chemosensor 1 could be a
good CN− sensor over other competing anions in aqueous
solution.

In order to further examine the proposed nucleophilic ad-
dition of CN- toward chemosensor 1, 1H NMR titrations were
performed (Fig. 8). Upon addition of 12 equiv. of CN−, the H8

protons of imine group at 9.8 ppm gradually disappeared and a

newH8’ proton at 6.1 ppm started to appear. This result strong-
ly suggested that the nucleophilic addition of CN− occurred at
the carbon atom of imine group of 1 [64, 65, 71–74]. All the
aromatic protons were shifted to upfield, which suggests that
the negative charge developed from the nucleophilic addition
of CN− to 1 might be delocalized through the whole receptor
molecule.

Fig. 8 1H NMR titration of 1
with CN−

Fig. 9 Energy-minimized structures of (a) 1 and (b) 1-CN−
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For biological application, the pH dependence of 1 in the
absence and presence of CN− was examined at various pH.
The increase of fluorescence intensity caused by adding CN−

was observed between 7 and 10 (Fig. S4), which warrants its
application for detection of CN− by 1 under physiological
conditions.

Theoretical Calculations for Sensing Mechanism of CN−

In parallel to the experimental study, to further get understand-
ing on the electronic structures of 1 and 1-CN-, we optimized
energy-minimized structures of chemosensor 1 and 1-CN- at
DFT/B3LYP/6-31G** level. Their energy-minimized struc-
tures were shown in Fig. 9, and bond lengths and angles were
compared between 1 and 1-CN-. In addition, the relationship
between orbital hybridisation and conjugation was compared. 1
was close to a sp2 hybridized imine group (bond angle=119.1°
(H1, C2, C3)) and planar conformation, whereas 1-CN− was
close to a sp3 hybridized carbon bond (bond angle=111.5°
(H1, C2, C3)) and tilted conformation. This structural difference
caused a significant change in π-conjugation between 1 and 1-
CN−, expecting that no ICTwas observed in the 1-CN− adduct.

To gain an insight into colorimetric and fluorescent sensing
mechanism for 1-CN−, time-dependent density functional the-
ory (TD-DFT) calculations were performed at the optimized
geometries (S0). In case of 1, the main molecular orbital (MO)
contribution of the first lowest excited state was determined
for HOMO→LUMO transition (384.80 nm, Fig. S5). The
HOMO was mainly localized in donor parts, i.e., NH2- and -
NH- in triazole moiety, whereas the LUMO was composed of
the atoms of the electron-withdrawing imine group (Fig. S5c),
which indicated intramolecular charge transfer (ICT) transi-
tion from amine to imine group, resulting in the yellow color
of 1. For 1-CN−, the main molecular orbital (MO) contribution
of the first lowest excited state was also determined for HO-
MO→LUMO transition (368.70 nm, Fig. S6). The HOMO
was mainly localized in π orbitals of the naphthol group,
whereas the LUMO was mainly localized in π* orbitals of
the naphthol group (Fig. S6c). These results indicated that
the nucleophlic addition of cyanide changed the first excited
state from ICT to π→π* transition of the naphthol group.
Therefore, the colorimetric sensing mechanism could be ex-
plained by blocking of the ICT transition by the nucleophilic
addition of CN− at imine carbon. Moreover, the fluorescence
sensing mechanism could be explained that π→π* transition
of the naphthol group, the most useful transition in fluores-
cence, acted as a fluorophore.

Conclusion

We have developed an outstanding single chemosensor 1,
based on a naphtholic Schiff base bearing a triazol group,

for CN− through the two different signaling (colorimetric
and fluorescent). Chemosensor 1 showed a highly selective
colorimetric and fluorescent response to cyanide via a
nucleophlic addition mechanism. The detection of CN− by 1
was found to be free of interference from any other anions in
aqueous solution. Moreover, DFT and TD-DFT studies sup-
ported the experimental data and the proposed sensing mech-
anisms. Thus, this sensor exhibits a new method to assay CN−

by two different detection modes.
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